140 research outputs found

    Finite speed of propagation and local boundary conditions for wave equations with point interactions

    Full text link
    We show that the boundary conditions entering in the definition of the self-adjoint operator describing the Laplacian plus a finite number of point interactions are local if and only if the corresponding wave equation has finite speed of propagatio

    Local approximation of observables and commutator bounds

    Full text link
    We discuss conditional expectations that can be used as generalizations of the partial trace for quantum systems with an infinite-dimensional Hilbert space of states

    On the Spectral Gap of a Quantum Graph

    Full text link
    We consider the problem of finding universal bounds of "isoperimetric" or "isodiametric" type on the spectral gap of the Laplacian on a metric graph with natural boundary conditions at the vertices, in terms of various analytical and combinatorial properties of the graph: its total length, diameter, number of vertices and number of edges. We investigate which combinations of parameters are necessary to obtain non-trivial upper and lower bounds and obtain a number of sharp estimates in terms of these parameters. We also show that, in contrast to the Laplacian matrix on a combinatorial graph, no bound depending only on the diameter is possible. As a special case of our results on metric graphs, we deduce estimates for the normalised Laplacian matrix on combinatorial graphs which, surprisingly, are sometimes sharper than the ones obtained by purely combinatorial methods in the graph theoretical literature

    A theory of spectral partitions of metric graphs

    Get PDF
    We introduce an abstract framework for the study of clustering in metric graphs: after suitably metrising the space of graph partitions, we restrict Laplacians to the clusters thus arising and use their spectral gaps to define several notions of partition energies; this is the graph counterpart of the well-known theory of spectral minimal partitions on planar domains and includes the setting in [Band \textit{et al}, Comm.\ Math.\ Phys.\ \textbf{311} (2012), 815--838] as a special case. We focus on the existence of optimisers for a large class of functionals defined on such partitions, but also study their qualitative properties, including stability, regularity, and parameter dependence. We also discuss in detail their interplay with the theory of nodal partitions. Unlike in the case of domains, the one-dimensional setting of metric graphs allows for explicit computation and analytic -- rather than numerical -- results. Not only do we recover the main assertions in the theory of spectral minimal partitions on domains, as studied in [Conti \textit{et al}, Calc.\ Var.\ \textbf{22} (2005), 45--72; Helffer \textit{et al}, Ann.\ Inst.\ Henri Poincar\'e Anal.\ Non Lin\'eaire \textbf{26} (2009), 101--138], but we can also generalise some of them and answer (the graph counterparts of) a few open questions
    • …
    corecore